

The following data is intended to be a helpful guide when selecting or specifying a lighting system.

Lighting Terminology

Luminous Intensity (I): Expressed in candelas (cd), it is the quotient of the luminous flux leaving the source propagated in an element of solid angle in a specific direction and the element of solid angle.

Luminous Flux (F): Expressed in Lumens (Im), it is quantity of radiant flux capable of producing visual sensation irrespective of direction. A lumen is the light flux falling on a Surface of one square foot in area, every part of which is one foot from a point source having a luminous intensity of one candela in all directions.

Illuminance (E): Expressed in Lux (lx), it is density of luminous flux on a surface and is measured by the quantity of lumens falling on an unit area. One Lux is equal to one Lumen per square metre.

Luminous Efficacy: Expressed as Lumens per watt is the quotient of the luminous flux emitted by a light source and the total power consumed.

Cosine Law: This law states that the illuminance at a point on a plane is proportional to the cosine of the angle of light incident $E = 1 \times Cos \times d2$.

Direct Flux: Is the luminous flux reaching the reference plane directly from all the luminaries in any installation.

Indirect Flux: Is the luminous flux reaching the reference plane after reflection against other surfaces

Inverse Square Law: States that the illuminance at a point on a plane perpendicular to the line joining the point and a source is inversely proportional to the square of the distance between the source and the plane. E = I/d2

Isocandela Diagram: Is the curve traced on an imaginary sphere with the source at its center and joining all adjacent points corresponding to those directions in which the luminous intensity is the same.

Isolux Diagram: Is the locus of points on a surface where the illuminance has the same value.

Luminous Intensity Diagram: Is the luminous intensity shown in the form of a polar diagram in terms of candela per 1000 lumens of lamp flux. The luminous intensity diagram can be used.

- a. To provide a rough idea of the light distribution of the luminaire.
- b. For the calculation of illuminance values at a point.
- For the calculation of the luminance distribution of the luminaire.

Utilisation Factor: Is the ratio of the utilized flux on the working plane to the luminous flux emitted by the lamp.

Maintenance Factor: Is the ratio of the average illuminance on the working plane after a certain period of use to the average illuminance obtained under the same conditions for a new installation.

Light Sources:

Lamp manufacturers are continually developing new lamps and improving existing ones. It is therefore essential to understand the various characteristics of the different lamps so that a proper light source can be selected for a given application. The principal, characteristics of the various lamps are indicated below:

Principal characteristics of lamps employed for general lighting purposes.

Characteristics		GLS	Halogen	SL*	PL*	'TL'	ML	HPL	HPI	SOX	SON
Luminous flux	lm	250 to 40000	10000 to 45000	450 to 1200	400 to 900	150 to 5300	3100 to 14000	2000 to 12500	19000 to 18700	1800 to 33000	3300 to 130000
Efficacy (without ballast)	lm/W	10 to 20	22	41 to 50*	59 to 78	38 to 91	19 to 28	40 to 63	75 to 95	100 to 183	70 to 130
Rating W		25 to 2000	500 to 2000	9 to 25	7 to 11	4 to 65	160 to 500	50 to 2000	250 to 2000	18 to 180	50 to 1000
Light colour		warm-white	warm-white	warm-white	warm-white	Warm-white intermediate cool	intermediate	intermediate	cool	warm-white	warm-white
Colour rendering		excellent	excellent	good	good	excellent to moderate	moderate	moderate	excellent to good	non- existent	poor
Ballast		none	none	built-in	choke	choke	none	ckoke	choke	hybrid	choke
Starter / Ignitor		none	none	built-in	built-in	starter or starterless	none	none	ignitor	seperate or built-into ballast	ignitor separate or built-into lamp
Run-up time min		zero	zero	zero	zero	zero	zero to 2	3	3	10	5
Restrike time min		zero	zero	zero	zero	zero	5	5	10	2	< 1

Lamp Efficiency:

The efficacy of any lamp is the average lumen output of the lamp divided by the total power of the lamp in waits. This is an indication therefore of the efficiency with which the lamp converts 1 watt of electrical energy into luminous energy. The efficacy depends not only on the wattage of the lamp but also upon the type of construction of the lamp. For example a 40W GLS lamp has an efficacy of 10.6 lumen/watt whereas 40W fluorescent lamps have an efficacy of 69.2 lumen/watt.

Wattage	Туре	Luminous Flux	Lumen / Watt
25 W	GLS	220	8.8
40 W	GLS	425	10.6
40 W	GLS	720	12.0
100 W	GLS	1380	13.8
150 W	GLS	2080	13.9
200 W	GLS	2920	14.6
300 W	GLS	4700	15.7
500 W	GLS	8300	16.6
1000 W	GLS	18600	18.6
1500 W	GLS	29500	19.7

Wattage	Туре	Luminous Flux	Lumen / Watt
20 W	FTL	1160	58.0
40 W	FTL	2770	69.2
65 W	FTL	4000	61.5
80 W	HPMV	3400	42.5
125 W	HPMV	5800	46.4
250 W	HPMV	12500	50.0
400 W	HPMV	2250	56.2
1000 W	MPMV	55000	55.0
160 W	MLL	2900	18.1
250 W	MLL	5200	20.8
250 W	SON	25000	100.0

	Horizontal illuminat	ion
α	Eh	lux
0	156 x 6.4 4 ²	= 62.4
30	156 x 6.4 x 0.65 4 ²	= 39.0
45	140 x 6.4 x 0.35 4 ²	= 19.6
60	120 x 6.4 x 0.125 42	= 6.0

Where h = 4

I = To be read from polar diagram

Lighting Design:

The design of lighting for a given area involves a clear understanding of not only the various types of luminaries available but also the different factors that affect the distribution of light from these luminaries. Some of the factors that affect the light output of a luminaire are

- 1. Luminaire design
- 2. Light source
- 3. Reflector, design and material
- 4. Position of lamp source within luminaire
- 5. Refractor design and material
- 6. Diffuser design and material
- 7. Quality and thickness of glass
- 8. Presence of any wireguards
- 9. Environmental conditions and
- 10. Frequency and quality of maintenance

An understanding of the above helps in working out the efficiency of the luminaire or the light loss factor which is vital for correct lighting design. While factors 1 to 8 depend upon the luminaire manufacturer factors 9 & 10 are dependent upon the user. The quality of maintenance and the amount of dust accumulated on a luminaire can drastically affect the light output.

The factors to be taken into account for lighting design are.

- 1. Luminaire Light distribution data.
- 2. Luminaire description
- 3. Shielding angle of reflectors
- 4. Coefft, of utilization
- 5. Reflectance of walls, ceiling, floor
- 6. Luminaire spacing
- Luminaire mounting height
- 8. Beam spread
- 9. Ambient environment
- 10. Maintenance factors.

Lighting Calculations:

Once tentative lamp and luminaire choices have been made, the designer can proceed with the lighting calculations. There

a r

2 methods commonly used to calculate illumination in indoor and outdoor spaces.

These are:

- a. Point by point method using the inverse square and cosine laws with data from the polar curves.
- b. Lumen method involving the zonal cavity method of obtaining the coefficient of utilization.

Lumen method:

The formula for calculating expected lighting levels by this method is

Α

= Illumination in lux

n = No. of lamps per luminaire

N = No. of luminaries

= Initial rated lamp lumens

LLF = Light loss factor for maintenance factor

CU = Coefficient of utilization

A = Area to be illuminated in sq. meters

Illumination Level E:

This is based upon the IES recommendation for illumination levels: Refer chart.

Initial lamp lumen F:

This is the initial rated lamp lumens of the selected lamp and is furnished by the lamp manufacturer

Coefficient of Utilisation CU:

This is the ratio of lumens reaching the working plane to the total lumen output of the lamp. The CU takes into account interreflectance of light in the room, the efficiency and light distribution of the luminaire, its mounting height and the geometry of the interior.

Light Loss Factor LLF:

Light Loss factors are those factors which contribute over a period of time to a decline in the light output of a given lamp – luminaire combination. This factor is usually considered to be the Lamp Lumen Depreciation (LLD) times the Luminaire Dirt Depreciation (LLD).

Point by Point Calculation:

The point by point method enables the calculation of illumination at a particular point at any orientation on a surface. The calculations are based upon the principles of the inverse square law and cosine law.

$$E = \frac{I \times Cos^3 \alpha}{h^2}$$

Currently recommended	d illuminance	values as	per IES
-----------------------	---------------	-----------	---------

Area of Activity	Illuminance on Task In Lux 1	Area of Activity	Illuminance on Task In Lux 1
Aircraft Industry	III EUX 1	Kilns (operating area)	50
Maintenance area	750	Extruders and mixers	200
Inspection area	1000	Nonprocess areas	
Paint Shop	1000	Loading, unloading, and cooling	
Testing area	750 1500	water pump houses	
Instruments assembly Electrical assembly	1500	Pump area	50
Explosives Manufacturing	1000	General control area	150 200
Furnaces, Boiling Tanks, Driers	200	Control panel	200
Mechanical furnaces, mechanical	500	Boiler and air compressor plants Indoor equipments	200
driers, generators		Outdoor equipments	50
Paint Shop		Tank fields (where lighting is required)	
Simple spraying	200	Ladders and stairs	5
Fine finishing	500	Gauging area	10
Extra fine finishing	2000	Manifold area	5
Paint Manufacturing		Loading racks	
Processing	200 – 500	General area Tank car	50 100
Mix comparison	10000 – 2000	Tank trucks, loading point	100
Electricity generating station		Electrical substations and switch yards	
Boilers area	50	Outdoor switch yards	20
Cooling towers	50	General substation outdoor	20
Fuel handling	50	Substation operating aisles	150
Storage tanks	10	General substation indoor Switch racks	50 50
Transformer yards Turbine areas	50 50	Plant road lighting (where lighting is Ro	
Petroleum, Chemical and Petro		Frequent use (trucking)	4
Process areas	chemical maastry	Infrequent use	2
		Plant parking lots Aircraft obstruction lighting2	
General process units Pump rows, valves, manifolds	50		
Heat exchangers	30	Buildings	
Maintenance platforms	10	Laboratories	
Operating platforms	50	Qualitative, quantitative and	
Cooling towers (equipment areas) Furnaces	50 30	physical test Research, experimental	500 500
Ladders and stairs (inactive)	10	Pilot plant, process and speciality	300
Ladders and stairs (active)	50	ASTM equipment knock test	300
Gauge glassed	50	Glassware, washrooms	300
Instruments (on process units) Compressor house	50 200	Fume hoods Stock rooms	300 150
Separators	50		130
General area	10	Warehouse and stock rooms	50
Control rooms and houses		Indoor bulk storage Outdoor bulk storage	5
Ordinary control house	300	Large bin storage	50
Instrument panel Console	300 300	Small bin storage	100
Back of panel	100	Small parts storage Counter tops	200 300
Central control house	500	Counter tops	300
Instrument panel	500	Repair shop	
Console Back of panel	500 100	Large fabrication	200
back of parier	100	Bench and machine work Craneway, aisles	500 150
Speciality process units		Small machine	300
Electrolytic cell room	50	Sheet metal	200
Electric furnace Conveyors	50 20	Electrical	200
Conveyor transfer points	50	Instrument	300

Area of Activity	Illuminance on Task In Lux 1	Area of Activity	Illuminance on Task In Lux 1
Change house Locker room, shower Lavatory Clock house and entrance gatehouse Card rack and clock area Entrance gate, inspection	100 100 100 150 50	Hot top Hot top storage Checker cellar Buggy and door repair Stripping yard Scrap stockyard Mixer building	300 100 100 300 200 100 300
General Cafeteria Eating Serving area Food preparation General, halls, etc. Garage and firehouse Storage and minor repairs	300 300 300 300 100	Calcining building Skull cracker Rolling mills Blooming, slabbing, hot strip Hot sheet Cold strip, plate Pipe, rod, tube, wire drawing	100 100 300 300 500
First aid room Iron and Steel Industry Open hearth	700	Merchant and sheared plate Tin plate mills Tinning and galvanizing Cold strip rolling	300 500 500
Stock yard Charging floor Pouring side Slag pits Control platforms Mold yard	100 200 300 50	Motor room, machine room Inspection Black plate, bloom and billet chipping Tin plate and other bright surfaces	1000 2000

¹ These illumination values are not intended to be mandatory by enactment into law. They are a recommended practice to be considered in the design of new facilities. All illumination valves are averages maintained levels.

² Refer to local FAA regulations for required navigational and obstruction lighting and marking.